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Abstract. The vibrational and electronic spectra of a semi-infinite crystal with a planar surface are modified
by the presence of surface inhomogeneities or roughness such as ridges or grooves, quantum wires or tips.
We develop a Green’s function formalism to investigate the localized and resonant acoustic modes of shear
horizontal polarization associated with the surface of a substrate supporting a single and a periodic array
of wires. Each material is assumed to be an isotropic elastic medium. The calculation can be applied to
an arbitrary choice of the shape and elastic parameters of the wires. The surface modes are obtained as
well-defined peaks of the densities of states (DOS). In this paper, we calculate the variation of the density
of states associated with the adsorption of a single wire, and the dispersion curves of the surface modes for
a periodic array of wires on the flat surface of a substrate. We discuss their behaviors as a function of the
elastic parameters and the relationship between resonant modes of the single wire and dispersion curves
of the surface modes for a periodic structure.

PACS. 43.40.+s Structural acoustics and vibration – 43.20.+g General linear acoustics – 62.30.+d Me-
chanical and elastic waves; vibrations

1 Introduction

With the progress of techniques such as microlithography
or molecular beam epitaxy, it is possible to create well
defined micro- or nanostructures on an otherwise planar
surface. These surface defects modify the physical proper-
ties of the crystal surface that in turn can serve as a tool
for the characterization of the surface inhomogeneities.
Several works have been devoted to the study of surface
acoustic vibrations in presence of a single [1–4] or peri-
odic [5–16] array of resonating elements. In particular, the
periodically corrugated surface of an elastically isotropic
substrate can support localized shear horizontal modes, in
contrast to the case of a substrate with a flat surface. The
propagation of surface acoustic waves across a grating or a
periodic array of wires deposited on a substrate is of great
current interest for several reasons: the system is a model
for randomly rough surfaces that can be studied exactly
and the results obtained in this work help to interpret the
observations for randomly rough surfaces. In the system
such as investigated here, there can be a conversion of sur-
face acoustic waves into bulk waves and the result of our
calculations could well be useful in the design of filters for
surface acoustic waves and transducers.

a e-mail: abdelkrim.khelif@fundp.ac.be

The aim of this paper is to investigate both localized
and resonant acoustic modes of shear horizontal polariza-
tion associated with the surface of a substrate supporting
a single wire and a periodic array of wires. We have de-
veloped an exact numerical method by using a Green’s
function formalism to obtain the local densities of states
(DOS) at every point inside the substrate and inside the
wires. With this method we deduce the dispersion curves
from well-defined peaks of the DOS for a periodic array
wires. The calculation can be performed for an arbitrary
choice of the shape and elastic parameters of the wires.
The method has been previously applied to the study of
acoustic shape resonances of a single wire [3,4] as well as to
investigate the scattering properties of an incident plane
wave by such a wire [17]. The main novelty in this work
lies in the calculation of the DOS, and accordingly the dis-
persion curves of both localized and resonant modes, for
a periodic array of wires, with an arbitrary choice of their
composition and geometry [16]. The dispersion curves are
presented as a function of the wavevector k parallel to
the surface and perpendicular to the wires, k being lim-
ited to the first Brillouin zone, namely −π/P < k < π/P
where P is the period. The localized modes lie below the
bottom of the substrate bulk band, while the resonances
fall in the radiative zone inside this band. We also dis-
cuss the behavior of the dispersion curves as a function of
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Fig. 1. Schematic of the geometry investigated in this work:
a single wire (a), or a periodic array of wires (b) adsorbed on
a substrate.

the material parameters (elastic constants and mass den-
sities), in particular their interaction with the sound line
of the substrate folded back into the first Brillouin zone.
At the end, we compare the frequency positions of these
branches with the resonant modes of individual wires.

Section 2 contains a brief presentation of the theoret-
ical formalism. Section 3 is devoted to the discussion of
the DOS and the dispersion curves. The conclusions are
drawn in Section 4.

2 Theoretical formalism

The geometry of the supported wires is sketched in
Figure 1. The wires are oriented parallel to the x2-axis,
perpendicular to the drawing plane.

We assume that the wires are fabricated from a mate-
rial of mass density ρ(a) and elastic modulus C(a)

44 . They
are bonded to a semi-infinite substrate fabricated from a
material of a mass density ρ(b) and elastic modulus C(b)

44 .
Each material is assumed to be an isotropic and homoge-
neous elastic medium.

The substrate fills the region x3 > 0 of the space. In
these structures the displacement field of the shear hor-
izontal vibration has a single component parallel to the
axis of the wires and can be written as:

u(x, t) = [0, u2(x1, x3|ω), 0] exp(−iωt), (1)

where ω is the frequency of the wave. The equation of
motion satisfied by the component u2(x1, x3|ω) in each
medium is:

C
(i)
44

(
∂2

∂x2
1

+
∂2

∂x2
3

+
ω2

C
(i)2
t

)
u2(x1, x3|ω) = 0, (2)

and is subject to the usual boundary conditions, namely
vanishing normal stress at the free surface and continuity

of the displacement and the normal stress at the substrate-
wire interface. In equation (2), C(i)

t is the transverse ve-
locity of sound in medium “i” defined by

C
(i)
t =

√
C

(i)
44

ρ(i)
· (3)

The Green’s function of the system is also given by an
equation similar to equation (2), i.e.

C
(i)
44
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∂x2
3

+
ω2

C
(i)2
t

)
Gi(x1, x3;x′1, x

′
3|ω) =

δ(x1 − x′1)δ(x3 − x′3), (4)

together with the appropriate boundary conditions.
In the case of an infinite homogeneous solid or of a

semi-infinite substrate with a planar free surface, the so-
lution of equation (4) is known analytically and can be
expressed with the help of the Hankel function of the first
kind as [18]

Gi(x1, x3;x′1, x
′
3|ω) =

−i

4C(i)
44
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t
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, (5)

for the bulk and
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′
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4C(i)
44
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+H(1)
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(
ω

C
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t

[
(x1 − x′1)2 + (x3 − x′3)2

]1/2)]
, (6)

for the semi-infinite medium.
From the knowledge of Gi and gi, one can calculate

the matrix elements of the Green’s function in the final
composite systems. We use the formalism of the inter-
face response theory [3,19] in which the calculation is first
performed in the reduced space of interfaces before be-
ing extended to the whole material. In the following, we
shall call M1 and M2 the parts of the surface of a wire
which are respectively in contact with vacuum and with
the substrate, and define M = M1∪M2 as being the space
of interfaces. The creation of both geometries in Figure 1,
can be accomplished schematically through the following
two operations.

2.1 Creating an isolated wire

First, an isolated wire is extracted from an infinite mate-
rial “a” by the application of a cleavage operator Va which
cuts the finite object out of the infinite solid

Va(x1, x3) = C
(a)
44

∂

∂n
, (7)
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where ∂
∂n means the normal derivative at the point (x1, x3)

of the boundaries.
The Green’s function ga of the finite wire in the in-

terface space M of this wire satisfies an integral equation
which can formally be written as [3,19,20]:

ga(M,M)[I(M,M)+Va(M,M)Ga(M,M)] = Ga(M,M),
(8)

where I is the identity matrix.

2.2 Coupling the wires to the substrate

Let us distinguish the case of a single wire from the case
of the periodic array of wires.

2.2.1 Single wire

The isolated wire “a” is coupled to the substrate “b”
through its interface M2. Because we are dealing with
continuous media, we obtain the following form for the
Green’s function gf of the final system in the interface
space M2 [18,19]

g−1
f (M2M2) = g−1

a (M2M2) + g−1
b (M2M2), (9)

where ga(M2M2) is a truncated matrix obtained from
ga(MM).

Both equations (8) and (9) are integral equations
which, for the numerical resolution, are converted into
discrete equations [3,4,17], taking careful account of the
singular behavior of the Green’s function and their deriva-
tives in the limit x→ x′.

2.2.2 Periodic wires

The wires are coupled to the substrate through their in-
terfaces M (n)

2 , where the superscript n refers to the num-
bering of the wires. Defining M ∪nM (n)

2 , one obtains:

g−1
f (M,M) = g−1

b (M,M) + g−1
a (M,M). (10)

Owing to the absence of interaction between the wires
before their coupling to the substrate, this equations can
also be written as:

g−1
f (M,M) = g−1

b (M,M) +
∑
n

g−1
a (M (n)

2 ,M
(n)
2 ). (11)

On the other hand, one can take advantage of the peri-
odicity along the direction x1 to perform a Fourier trans-
form and express equation (10) in only one unit cell for
every value of the wavevector k parallel to x1 which is
limited to the first Brillouin zone, i.e., −π/P < k < π/P .
Then, equation (11) can be written in a mixed (real space-
reciprocal space) representation as

g−1
f (X1, X

′
1|kω) = g−1

a (X1, X
′
1) + g−1

b (X1, X
′
1|kω), (12)

where the real space part (X1) can be limited to one sin-
gle unit cell, let us say M

(0)
2 . To calculate the inverse of

the substrate Green’s function in the mixed representation
g−1
b (X1, X

′
1|kω), it is first necessary to Fourier transform

gb(x1, x
′
1|ω). In that way we have from equation (6) for

x3 = 0:

gb(X1, x3 = 0;X ′1, x
′
3 = 0|kω) =

+∞∑
n=−∞

−i

2C(b)
44

H
(1)
0

[
ω

C
(b)
t

(|X1 −X ′1 + nP |)
]

exp(iknP ).

(13)

We propose the following original method to calculate the
above series. The first few terms of the Fourier series (up
to n0 = 50) are computed exactly, while the next terms
are evaluated by using the following asymptotic behavior
of the Hankel function for large arguments:

H
(1)
0 (z) ∼=

√
2
πz

[f(z) + iQ(z)] exp
(

i
(
z − π

4

))
, (14)

where f(z) = 1 − 9
128z2 + 11 025

9 830z4 + . . . , and Q(z) =
− 1

8z + 225
3 072z3 + . . . By injecting the asymptotic behav-

ior equation (14) in equation (13) and making a Taylor
expansion with respect to the small quantity |X1−X′1|

nP , the
asymptotic terms of equation (13) can be cast into the
form:

see equation (15) above,

where An and Bn are coefficients that depend on fre-
quency and wave vector. Their expressions are given in
the Appendix.

The advantage of the above method relies on the fact
that the coefficients An and Bn are calculated for each
frequency ω and wavevector k, but independently of the
spatial position X1 or X ′1. Therefore, it is much faster to
calculate the expression (15) for every value of (X1 −X ′1)
than evaluating the expression (13) that contains explic-
itly the Hankel function.
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Once the elements of the Green’s function in the in-
terface space are known in the two geometries (single and
periodic wires), all the matrix elements can be obtained
through the equation [19]:

gf(DD) = gr(DD) + gr(D,M)

× [g−1
r (MM)gf(MM)− I(MM)]g−1

r (MM)gr(MD),
(16)

where D is the whole space of the material and gr the
Green’s function of the reference system composed of un-
coupled substrate and wires. The knowledge of gf in the
space D enables us to calculate the local density of states
at any point inside the wires or the substrate

n(x, ω) =
−2ω
π

ρ(x)Im gf(x, x). (17)

It should be noted that for a periodic geometry (Fig. 1b)
one has to substitute x→ (X1, x3) where X1 is limited to
only one unit cell.

3 Discussion of the densities of states
and dispersion curves

In this section we present and comment on a few calcula-
tions of the local and total density of states and dispersion
curves for localized and resonant modes. In these calcula-
tions we assume that the wires have a trapezoidal shape
(see Fig. 1), this means they are bounded by the following
equation

ζ(x1) =


−A for |X1| ≤ R′

A
(X1 −R)
R−R′ for R′ < |X1| < R,

(18)

and in most of the following illustrative examples we have
taken A = 2R and R′/R = 1/4. In the discretization of
integral equations, the interval [−R,R] is divided into 2N
equal parts, with N = 100.

3.1 Single wires

Owing to the symmetry of the geometry, the acoustic reso-
nances may be distinguished according to their symmetric
or antisymmetric character.

Figure 2 gives the variation ∆n(ω) = nf(ω) − nb(ω)
of the total density of states due to the deposition of the
wire onto the planar surface. For comparison, we have also
displayed in each panel the local densities of states inte-
grated either along the planar interface between the wire
and the substrate or along the free surface of the wire. In
these few examples the two materials may either be iden-
tical or have different mass densities and elastic constants.
When the wire is deposited on a substrate, the acoustic
resonances appear as well-defined peaks of the total and
local DOS (see Fig. 2). In panels (a) (symmetric modes)

and (b) (antisymmetric modes) these DOS are calculated
in the case of a wire made of the same material as the
substrate, which can be considered as a model of surface
roughness. There is a connection between the peaks of
the density of states and the discrete eigenfrequencies of
an isolated (not supported) wire with stress-free surface.
This correspondence becomes more pronounced by stiff-
ening the material of the wire, i.e. by taking C(a)

44 � C
(b)
44

(panels (c) and (d)). This behavior can be understood
on the basis of the continuity of the normal stress at the
substrate-wire interface, namely the wire behaves like an
unsupported medium when its elastic constant becomes
much larger than that of the substrate. In the same way,
when the wire is softer than the substrate, i.e. C(b)

44 � C
(a)
44

(panels (e) and (f)), we can establish a connection between
the peaks in the DOS and the eigenfrequencies of an iso-
lated wire that has its boundary (M2) with the substrate
rigidly fixed, the boundary with vacuum (M1) being still
free of stress (we refer to such a situation as mixed bound-
ary conditions [3,4]).

The lowest two panels in Figure 2 give the DOS when
the substrate and the wire have the same elastic constant
but differ by their mass densities. When the substrate is
much denser than the wire, i.e. ρ(b) � ρ(a) (panels (g, h)),
the peaks in the total DOS occur approximately at the
same frequencies as those obtained for a hard substrate
(panels (e, f)). On the other hand, for a light substrate
ρ(a) � ρ(b) (panels (i, j)), one can only notice an approx-
imate similarity with the results of panels (c, d) corre-
sponding to a soft substrate, with however a slight shift
for the low frequency symmetric resonance that may orig-
inate from the static (ω = 0) mode of the isolated wire.

Another point to notice in all the above illustrations
concerns the similarity between the peaks in the total DOS
and those in the average local DOS at the free surface
(M1) of the wires. In contrast, the peaks in the local DOS
at the substrate-wire interface (M2) may happen at the
same frequencies as those of the total DOS (panels (a, b),
(c, d) or (i, j)), or be shifted with respect to the latter
(panels (e, f) or (g, h)). Indeed, unlike the interface, the
boundary condition at the free surface (M1) is not sensi-
tive to the relative change of the elastic parameters.

These peaks in the density of states for a single wire
will help us in understanding the dispersion curves of a
periodic structure.

3.2 Periodic wires

In this section, we present a few illustrations of the DOS
and resulting dispersion curves for the localized and reso-
nant modes.

First, we assume that the substrate is made of a ma-
terial with a higher elastic constant than the wires, and
the geometrical parameters are taken to be: A/R = 2,
P/R = 2.1 and R′/R = 1/4. Figure 3 gives an example
of the average local density of states at the free surface
of each wire. Remember that the behavior of the total
DOS resembles that of the local DOS at the free surface.
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Fig. 2. Resonant modes associated with an adsorbed wire “a” on the substrate “b”. The full lines give the variation in the total

density of states (in units of R/C
(a)
t ) as a function of Ω = ωR/C

(a)
t ; with 2R the long basis of the trapezoidal wire. The dashed

and dotted lines respectively give the local density of states (in units of (4Ct)
−1) integrated along the free surface and along

the substrate-wire interface. Left (resp. right) panels correspond to the symmetric (resp. antisymmetric) modes. The elastic

parameters are defined as: panels (a) and (b) C
(a)
44 /C

(b)
44 = 1, ρ(a)/ρ(b) = 1; (c) and (d) C

(a)
44 /C

(b)
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44 /C

(b)
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44 = 1, ρ(a)/ρ(b) = 4.

In this figure, the DOS are sketched for several values
of the wavevector k ranging from 0 to π/P . At the lowest
wavevector (Fig. 3a), one can notice a very sharp and nar-
row peak that appears below the bottom of the substrate
bulk band defined by the sound line ω = C

(b)
t k (marked

by an arrow under the frequency axis). This peak is as-
sociated with a surface localized mode. By increasing the

wavevector k (Figs. 3b, c, d), a second and a third sur-
face mode also emerges from the bulk band. Besides the
localized modes, there are also several well-defined peaks
of the DOS existing inside the bulk band of the substrate
that are associated with resonant (or leaky) waves. The
shape and intensities of these peaks significantly depend
upon the wavevector k; however, their frequencies are
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almost independent of k except in the vicinity of the points
where their dispersion curves cross the sound line folded
back into the first Brillouin zone (see also Figs. 4–6 below).

From the calculations of the DOS, one can obtain a
general view of the dispersion curves of the localized and
resonant modes as a function of the different parameters
involved in the problem, namely the period P , the shape
(or geometry) of the wires and the material parameters
(i.e. the contrast between the elastic constants and mass
densities of the wires and the substrate). The results are
illustrated in Figures 4–6 where we represent a series of
gray-scale DOS maps as a function of the frequency ω and
the wavevector k. The advantage of this presentation is to
illustrate both the dispersion curves and the widths (or
lifetimes) of the resonant states.

First, we discuss in Figure 4 the behavior of surface
modes as a function of the period P by plotting the dis-
persion curves for P/R = 2.1 (Fig. 4a) and P/R = 3
(Fig. 4b). We assume here that the wires and the sub-
strate are made of the same material, and the geometrical
parameters are A/R = 2 and R′/R = 1/4. In both pan-
els, there is one surface branch below the bulk band, that
is associated with a localized mode. However, as we shall
see in the next figures, the number of localized modes
may be increased or decreased by changing the geometri-
cal and/or the elastic parameters. In the long wavelength
limit (small wavevector k) the surface branch is tangent

to the sound line ω = C
(b)
t k. At higher wavevectors, the

dispersion curve bends away from the sound line and dis-
plays the phenomenon of wave slowing, i.e. slowing down
of the phase and group velocities. Also, the localization of
the surface mode increases near the Brillouin zone edge
because the surface branch becomes more separated from
the bulk band. These effects are more important in the
case P/R = 2.1 where the distance between the wires is
smaller.

Besides the localized modes, the Green’s function
method also enables us to obtain the dispersion curves of
the resonant states which fall inside the bulk band. One
can notice that these curves are in general rather flat and
widened. However, they display a bending when they cross
the sound line folded back into the first Brillouin zone. The
narrow frequency domains covered by these resonances co-
incide well with the corresponding resonances of a single
supported wire. Indeed, the lowest discrete modes of the
single wires give rise to the surface localized branches,
whereas the highest modes fall inside the substrate bulk
band and become resonant branches.

Figures 5 illustrate the dependence of the disper-
sion curves with the geometrical parameters of the wires,
namely the height A and the ratio R′/R of the bases of
the trapeze in Figure 1. In Figure 5a, where the dispersion
curves are given for A/R = 4, one can notice an increase
in the number of surface modes as compared to Figure 4a
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Fig. 4. Dispersion curves of the localized and resonant modes
as a function of the reduced wavevector kP for two different
periods: (a) for P/R = 2.1 and (b) P/R = 3. The wires are
assumed to be made of the same material as the substrate, the
geometrical parameters are A = 2R and R′/R = 1/4.

where A/R = 2. This behavior is related to the increase in
the size of the wires and is in agreement with the results
obtained in previous works for the localized modes of a
rectangular [9] or sinusoidal [14] grating ruled on the sur-
face of a substrate. In particular, there are two branches
of localized modes below the substrate bulk band and sev-
eral resonant branches in the frequency domain displayed
in Figure 5a.

In Figure 5b we have changed the other geometrical
parameter of the model, namely the ratio R′/R is taken
to be 1/2 instead of 1/4 as in Figure 4a. This has the
effect of bending more strongly the localized branch, and
also induces some modifications of the DOS inside the bulk
band.

Finally, in Figure 6, we illustrate the behavior of the
dispersion curves for different elastic parameters of the
wires as compared to those of the substrate. Regarding
the localized surface branches, one can distinguish two

typical behaviors depending on the ratio c = C
(a)
t

C
(b)
t

be-

tween the sound velocities in the wires and in the sub-
strate. In the first situation c < 1 – which can be realized

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5
0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

67.67 -- 70.00

49.00 -- 51.33

30.33 -- 32.67

11.67 -- 14.00

4.667 -- 7.000

2.333 -- 4.667

0 -- 2.333

K*P

W

K*P

W

(a)

(b)

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5
0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

38.00 -- 40.00

26.00 -- 28.00

14.00 -- 16.00

2.000 -- 4.000

0 -- 2.000

Fig. 5. Same as in Figure 4a, except that in panel 5a A = 4R
and in panel 5b R′/R = 1/2.

by assuming that the substrate has a higher elastic con-
stant (Fig. 6a) or a lower mass density (Fig. 6b) than the
wires – the surface branch more strongly bends near the
Brillouin zone edge, and even higher surface branches can
emerge from the bulk band. In contrast, in the opposite
situation c > 1 – which can be obtained if the substrate
has a lower elastic constant (Fig. 6c) or a higher mass den-
sity (Fig. 6d) than the wires – the surface branch lies very
close to the bulk band and may even disappear by chang-
ing the geometrical parameters of the wires or the period
of the array (for instance by decreasing the ratio R/P , i.e.
by increasing the period as compared to the size of the
wires). One can point out a more important localization
of the surface waves in the case c < 1 than in the opposite
situation. Figure 6 also contains the dispersion curves of
the resonant modes. As mentioned before, these branches
remain, in general, rather flat and their frequencies are
in close agreement with those of the resonant modes of
a single wire; however, one can notice an interaction of
these modes with the sound line folded back into the first
Brillouin zone which gives rise to a bending of the disper-
sion curves around these crossing points.
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Fig. 6. Same as in Figure 4a but for different elastic param-

eters of the wires and the substrate: (a) C
(a)
44 /C

(b)
44 = 0.25,

ρ(a)/ρ(b) = 1; (b) C
(a)
44 /C

(b)
44 = 1, ρ(a)/ρ(b) = 4; (c) C

(a)
44 /C

(b)
44 =

4, ρ(a)/ρ(b) = 1; (d) C
(a)
44 /C

(b)
44 = 1, ρ(a)/ρ(b) = 0.25.

4 Conclusion

The main object of this paper was to develop a new the-
oretical method to investigate the vibrational properties
of a single ridge and, more especially, of a periodic ar-
ray of ridges deposited on a substrate. The interest of the
method relies on its capability of treating any geometry
and composition (elastic parameters) of the wires. The
calculation is based on a Green’s function formalism in
which the local DOS can be obtained at every point in-
side the wires or inside the substrate. From the knowledge
of these quantities, we have studied the surface localized
and resonant modes associated with the wires for vari-
ous physical and geometrical parameters of the system.
Lets us notice that an extension of this work [17] can also
enable us to obtain the scattering of an incoming acous-
tic wave from the corrugated surface and, therefore, may
have applications in the topic of near field microscopy or
nondestructive testing.

The above method was first applied to obtain the
acoustic shape resonances of a single ridge. Both the con-
trasts between the elastic constants and between the mass

densities are important for the determination of the reso-
nance frequencies. The linewidths of the peaks are related
to the lifetimes of these excitations. In some limiting cases
of a very soft or of a very hard wire, the resonance fre-
quencies become comparable to those of an isolated (non
supported) wire with appropriate boundary conditions.

The second application of the method was dealing with
a periodic array of wires. The number and dispersion of
the localized branches (situated below the substrate sound
line) are very dependent upon the geometrical and elas-
tic parameters of the wires. Qualitatively, this number
increases (resp. decreases) either by softening (resp. hard-
ening) the wires as compared to the substrate or by in-
creasing (resp. decreasing) the height of the wires. These
general trends are of course very similar to those of the
Love modes associated with an adlayer deposited on a
substrate. Roughly speaking, our system of periodic wires
separated from each other by vacuum can be considered
as an effective coating adlayer, with however a lower mass
density and a lower elastic constant than in the actual
wires. This is particularly true in the long wavelength
limit. Nevertheless, when the wavelength decreases, the
true system differs from the coated substrate by the exis-
tence of the Brillouin zone associated with the periodic-
ity of the wires. As a consequence, there is a bending of
the dispersion curves near the zone boundary that leads
to a slowing down of the phase and group velocities. It
is also worth to mention that the dispersion and num-
ber of surface branches are also dependent upon the pe-
riod P that effects the interaction between neighboring
wires. Finally, in our calculations, the resonant modes in-
duced by the wires in the radiative frequency domain re-
main rather dispersionless, except when they interact with
the sound line of the substrate folded back into the first
Brillouin zone. Their frequencies are therefore rather sim-
ilar to those obtained for a single ridge.

To end this section, we would like to mention that
our methodology can also be applied to the problem of a
periodic interface between two elastic isotropic materials
or a line grating surface, and should also be useful for
studying other excitations such as electromagnetic waves,
or electronic states in the frame of an effective mass model.

This work has been made possible partly thanks to the Conven-
tion 991/4269 First-Europe (“Objectif 1”) from the Walloonia
Region of Belgium and the European Union.

Appendix

We use the following notation to give the expressions of

An and Bn α = ωP

C
(b)
t

, β = C
(b)
t k
ω , a1 = 9

128 , a2 = 11 025
98 304 and

b1 = 1
8 , b2 = 225

3 072 .
The summations which depend of the frequency ω and

wavevector k are:

Fv =
∞∑

n=n0+1

einα(1+β)

nv
, Gv =

∞∑
n=n0+1

einα(1−β)

nv
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where v = 1/2, 3/2, 5/2, 9/2, 11/2.
The expressions of An and Bn are:

A1 =
C

(b)
t

ω

[(
5a1

2α2
F (7/2)− 1

2
F (3/2)− 9a2

2α4
F (11/2)

)
+i
(

3b1
2α

F (5/2)− 7b2
3α3

F (9/2)
)]

A2 =
C

(b)
t

ω

[(
3
8
F (5/2)− 35a1

8α2
F (9/2)

)
+i
(

63b2
8α3

F (11/2)− 15b1
8α

F (7/2)
)]

A3 =
C

(b)
t

ω

[(
105a1

16α2
F (11/2)− 5

16
F (7/2)

)
+i
(

35b1
8α

F (9/2)
)]

A4 =
C

(b)
t

ω

[(
35
128

F (9/2)
)

+ i
(
−315
128α

b1F (11/2)
)]

B1 =
C

(b)
t

ω

[(
5a1

2α2
G(7/2)− 1/2G(3/2)− 9a2

2α4
G(11/2)

)
+i
(

3b1
2α

G(5/2)− 7b2
3α3

G(9/2)
)]

B2 =
C

(b)
t

ω

[(
3
8
G(5/2)− 35a1

8α2
G(9/2)

)
+i
(

63b2
8α3

G(11/2)− 15b1
8α

G(7/2)
)]

B3 =
C

(b)
t

ω

[(
105

16α2
a1G(11/2)− 5

16
G(7/2)

)
+i
(

35b1
8α

G(9/2)
)]

B4 =
C

(b)
t

ω

[(
35
128

G(9/2)
)

+ i
(
− 315

128α
b1G(11/2)

)]
.
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